
An Introduction to NovaScript

Richard M. Salter

April 13, 2014

1 Introduction

NovaScript is a new language for defining simulations. NovaScript is embedded in and extends

Javascript, and the NovaScript interpreter is an extension of the ECMA 1.7 Javascript standard.

The full range of the Javascript language is available to the NovaScript programmer for specifying

the computations required by his or her simulation.

NovaScript is part of the Nova 2 simulation platform, which includes facilities for specifying sim-

ulations visually using an extension of the stock and flow diagrams familiar to programmers of

Stella and Vensim. In Nova 2 simulations may be specified visually using such visual schematic

diagrams, or textually using NovaScript . We will refer to the former as a diagram specification,

while the latter will be referred to as a code specification. Nova 2 currently provides a mecha-

nism for converting from diagram to code and future versions will provide an analogous tool for

converting from code to diagram.

One major advantage of Nova 2 and NovaScript is their ability to express and carry out integrated

simulations defined in the system dynamics, cellular and agent-based paradigms.

2 System Dynamics Fundamentals

The reader is expected to be familiar with the basic structure of popular stock-and-flow-based

simulation systems such as Stella, Vensim and Berkeley Madonna.

NovaScript is designed as an object-based system. Each object can have one or more fields

containing values or expressions to be computed. Object behavior is determined by methods

(functions) that define operations.

1

2.1 Primitive Components

Simulations in NovaScript are built out of objects called components. Among the component

types are primitive components, simulators, displays, and controls.

The primitive components consist of stocks, variables, sequences, flows and terms. Stocks,

variables and sequences are used to represent the state of a running simulation. The stock compo-

nent may be attached to one or more flows. Each flow specifies some change in the current value

of the stock. A variable is similar, only it is not attached to any flow. Its change is determined by

a derivative contained in the prime field. Sequences are similar to variables, except that they are

discrete, and change is indicated by a next field, directly determining the value of the sequence in

the next time interval.

Flows and terms both have exp fields containing their expressions. As mentioned above, flows

affect the value on the stocks to which they are attached. A term is used to compute a value using

current state values (in Stella, what we call a term is referred to as a converter.)

2.2 Capsules

The capsule is one of the four types of simulators currently supported by NovaScript (the others

are cellmatrix, agentvector and simworld; they will be discussed in subsequent sections). A

simulator is a component capable of undertaking a complete simulation. Of the four, the capsule is

the simplest. The role of the capsule is to contain the components of a simulation and synchronize

the progress of the computation. A capsule holds instances of the primitive components, but may

also contain other capsules, and other simulators.

2.2.1 Defining a capsule

A level-one simulation is defined by specifying a capsule. A capsule can be defined either

directly or using a schema. In the example that follows we will be introducing and describing

Javascript notation to the extent that it is required to understand NovaScript . The reader is en-

couraged to explore Javascript more deeply. One good tutorial is found at http://www.cs.brown.

edu/courses/bridge/1998/res/javascript/javascript-tutorial.html. Note, however, that

Javascript has been most popular as a Web-browser tool, which can be ignored for our purposes

(you can start with Chapter 3)

2

http://www.cs.brown.edu/courses/bridge/1998/res/javascript/javascript-tutorial.html
http://www.cs.brown.edu/courses/bridge/1998/res/javascript/javascript-tutorial.html

Figure 1: Nova Population Model

2.2.2 A simple example

Figure ?? is a Nova 2 diagram depicting a simple model of exponential population growth. In

Figure ??b we have specified the expression (pop * rate) in the flow births governing the growth

of the population represented by the stock pop. The value of rate (not shown) is a constant

0.1.

One direct representation of this scenario in NovaScript is as follows:

var PopCapsuleBuilder = function (name, start, r) {

var pop = new Stock("pop");

var births = new Flow("births");

var rate = new Term("rate");

pop.initial = start;

births.exp = ’rate * pop’;

births.output = pop;

rate.exp = r;

pop.verbose = true;

var ans = new Capsule(name, [pop, rate, births]);

return ans;

};

We will now examine the features of the Javascript language being employed in this definition.

Greater detail can be found in the Javascript tutorial referenced above.

var PopCapsuleBuilder

The var tag indicates a Javascript variable, to which some Javascript value can be assigned.

Javascript values include numbers, strings, arrays, objects and functions.

3

function (name, start, r) { ... }
In this case we’ve assigned a function. Much of Javascript programming involves the defini-

tion of functions, which are computations that can be invoked multiple times. Here we are

defining a function that will build a capsule according to our wishes.

var pop = new Stock("pop")

The right hand side indicates the creation of a new Stock object with name “pop”. The

term Stock in new Stock(...) is called a constructor since it builds a stock object.

All NovaScript components are given names. It is convenient, though not necessary, to

assign this new object to a variable of the same name. Variables births and rate are being

respectively assigned a flow and term.

pop.initial = start

The initial field of the stock pop is assigned the value of start, which is a parameter

passed to the function. A field is a variable name associated with a particular object. The

notation pop.initial is used throughout Javascript to reference fields. The initial field

of a stock, variable or sequence is its initial value. It can be a constant or expression.

births.exp = ’rate * pop’

Here we assign the flow births the expression rate * pop. The expression takes the form

of a string – a sequence of characters enclosed within single or double quotes (note that we

use single quotes here but used double quotes when naming “pop”, “births”, and “rate”; the

choice of single or double quotes is only important when one has one quoted string inside of

another.) Strings are one of the two basic data types represented in Javascript (the other is

numbers).

births.output = pop

With this assignment we are connecting the flow births to the stock pop. The reference to

pop in this expression is the variable representing the stock of the same name.

rate.exp = r

We are setting the expression field of the term rate with the parameter r passed to the

function.

pop.verbose = true

This causes the value of pop to be logged on the console as the simulation runs. We will see

the effect later.

var ans = new Capsule(name, [pop, rate, births])

Having built each of the components, we now construct the capsule by passing a name and

4

list of components. The notation [pop, rate, births] is an array, or list. In Javascript

an array can built out of any set of constituants;, e.g., var a = [1, "two", 3.0]. Array

elements are accessed using square brackets and indices;, e.g. a[0] == 1, a[1] == "two",

etc.

return ans

The variable ans refers to the capsule we have just built; it is returned as the value of the

function PopCapsuleBuilder.

Note that with this program we have created not just a single capsule, but a capsule “factory” that

will produce as many instances of the population model as we’d like. By varying the parameters

passed to the function, we obtain population models with different rates and starting values.

2.3 The Clock

Before we can run the example we need a special object called a clock Clocks are not simulation

components; rather they initialize and control the running of the simulation. To create a clock

you do something like the following:

var cl = new Clock(0, 20, .1, ’rk4’)

The four parameters passed to the clock constructor represent the following:

start The starting time of the simulation.

end The ending time of the simulation.

dt The value of DT used to increment the current time at each step; also used by the integrator

to determine state values.

method The integration method to be used. Acceptable values are rk2, rk4 and euler.

2.4 Running the example

Enter the code from the listing above into the top window of the NovaScript console, along with

the line defining the clock, and click Load Program. Next type the following into the NovaScript

console lower window and click return.

js> var popModel = PopCapsuleBuilder("popModel", 1, 0.1);

You have defined popModel to be a population model capsule with start value 1 and rate 0.1.

5

Figure 2: Population Model in NovaScript

6

To run the program, do the following (lower window):

js> cl.init(popModel)

js> cl.run()

Because of the pop.verbose = true; entry in our definition of PopCapsuleBuilder, we see the

values of pop between 0 and 20 at intervals of 0.1.

Note: the single expression

js> cl.exec(popModel)

may be used as an alternative to

js> cl.init(popModel)

js> cl.run()

2.5 Alternate construct

Because this model uses a single flow into its only stock, we can eliminate the flow and substitute

a variable for that stock. This version is defined as follows:

var PopCapsuleBuilder = function (name, start, r) {

var pop = new Variable("pop");

var rate = new Term("rate");

pop.initial = start;

pop.prime = ’rate * pop’;

rate.exp = r;

pop.verbose = true;

var ans = new Capsule(name, [pop, rate]);

return ans;

};

3 Schemas

In the previous example, we built the capsule by constructing all of the component parts, con-

necting them directly through assignments to their fields, and passing the list to the capsule

constructor. An alternate approach is to use schemas, which are structures that contain descrip-

tions of the components and define their relationships. NovaScript has built-in tools that can

create capsules (in fact all simulators, displays and controls) from these descriptions.

7

Schemas use a Javascript construct that we have not encountered previously: the Javascript object,

also known as a record structure. A Javascript record structure is similar to an array in that it

contains component element; however each element is associated with a field. The field is used

both to assign and retrieve the data from the structure.

The form of a property list is shown in the following example:

var record = {first_name: "John", last_name: "Public", town: "AnyTown, USA"}

Here, the property names are first name, last name and town. Corresponding to first name

is the string "John", etc. Note: it is important that colons be used in associating fields with their

values, and that commas be used to separate the field/value pairs.

References to a record field can use either of two notations: the dot notation: record.first name;

and the square bracket notation: record["first name"] both will return "John’’. (Note the

use of quotes in the second version).

Here is a schema defining the population model:

var popSchema = {

specifies: "Capsule",

properties: {r : 0.1},

variables: ’pop’,

terms: [’birth’, ’rate’],

dynamics:[

’pop.initial = 1’,

’birth = rate * pop’,

’pop.prime = birth’,

’rate = r’,

’pop.verbose = true’,

]

}

The schema consists of a record containing the fields specifies, properties, variables, terms

and dynamics. The order in which the fields appear is not meaningful.

The field value associated with specifies gives the type of component being defined by the

schema; it includes all of the simulator types (capsule, agentvector, cellmatrix, simworld),

as well as displays (graph, table, raster, agentviewerx) and controls (slider, spinner). The

properties field is itself a record structure defining various constant values used in the expressions

that follow below.

8

Next come the various component types. In this scenario we have listed a single variable, (named

pop) and 2 terms (birth and rate). The right hand side of each of these fields must either be a

string (if there is only one being declared) or a list of strings.

The largest field by far is dynamics. This consists of list of strings, where each string is an equation

defining some property of some component. Note that these strings very closely match the body

of our first definition.

To build a capsule with a schema, use the following form:

var popModel = Capsule.newCapsule("popModel", popSchema);

The capsule popDemo can be executed using a clock as described above.

3.1 Schema Registries

In the previous example we assigned a schema to the variable popSchema, then passed that vari-

able to Capsule.newCapsule . An alternative approach is to associate a schema with a name

using defineSchema, then pass the name rather than the variable when building the capsule.

For example, our population model schema can be associated with the name "popSchema" as

follows:

defineSchema("popSchema", {

specifies: "Capsule",

properties: {r : 0.1},

variables: ’pop’,

terms: [’birth’, ’rate’],

dynamics:[

’pop.initial = 1’,

’birth = rate * pop’,

’pop.prime = birth’,

’rate = r’,

’pop.verbose = true’,

]

});

Now, creating a capsule looks like this:

var popModel = Capsule.newCapsule("popModel", "popSchema");

Almost the same, but note the quotes around popSchema – we pass the name rather than the

structure. NovaScript maintains a schema registry where defineSchema associates names with

9

Figure 3: Nova Display and Control Components

schema structures. The advantage of this approach is one of efficiency: a registered schema has

a single capsule factory associated with it to build all of the capsules required by a particular

model.

4 Displays and Controls

The Nova 2 visual platform contains several visualizing components (tables, graphs) and control

components such as sliders and spinners. NovaScript programs that don’t originate visually can

still use these to present data and specify input values.

Figure ?? shows the Nova 2 platform containing a table, graph and slider. These can be used in

a coded program by adding “proxy schemas” to that program as follows:

pop1.defineSchema(’my_slider’, {

specifies: "Slider",

proxy: "birth_rate",

lo: 0.000,

hi: 1.000,

dec: 2,

value: 0.150

});

10

pop1.defineSchema(’my_table’, {

specifies: "Table",

proxy: "poptable",

display: "pop"

});

pop1.defineSchema(my_graph’, {

specifies: "Graph",

proxy: "popgraph",

type: "TIMESERIES",

display: "pop"

});

A proxy schema represents a visual display or control within a coded program. [Note: the names

chosen for the schema are arbitrary]. The proxy field must match the name of the visual element

to make the connection. The other fields provide configuration information for the control or

display. In the case of the table and graph, the display field indicates what is being tabulated

or graphed.

Finally, we add 3 components (birth rate, poptable and popgraph) to our model definition and

associate them with the proxy schemas. Since the display field of the 2 display schemas indicate

what is to be shown, no further elaboration is required. We do, however, have to connect the

slider with the rate term; this can be seen in the new equation ’rate = birth rate’. We have

also deleted the property r since it is no longer being used.

defineSchema("popSchema", {

specifies: "Capsule",

variables: ’pop’,

terms: [’birth’, ’rate’],

controls : {

birth_rate: "my_slider",

},

displays: {

poptable: "my_table",

popgraph: "my_graph",

},

dynamics:[

’pop.initial = 1’,

’birth = rate * pop’,

’pop.prime = birth’,

11

Figure 4: Lotka-Volterra Model

’rate = birth_rate’,

’pop.verbose = true’,

]

});

5 Project-Based Models

NovaScript allows you to organize all aspects of a given simulation into a project. Projects are

particularly important for the capture mechanism, which creates a project as the target of the

capture.

To illustrate, we consider the diagrammed implementation of the Lotka-Volterra model shown in

Figure ??. A coded implementation of this model will require 3 scenarios (one for the capsule and

one for each of the displays). Clicking capture on this model produces the following code:

var lotka_1 = new Project(’lotka_1’);

beginProject(lotka_1);

lotka_1.defineSchema(’main’, {

12

specifies: "CAPSULE",

stocks: [’Prey’, ’Predator’],

flows: [’Eating’, ’Death’, ’Births’, ’Predation’],

displays: {

Table: "main_Table",

Lotka-Volterra_Data: "main_Lotka-Volterra_Data",

},

dynamics: [

"Prey.initial = Init_Prey",

"Prey.nonnegative = true",

"Prey.output = Predation",

"Predator.initial = Init_Pred",

"Predator.nonnegative = true",

"Predator.output = Death",

"Eating.output = Predator",

"Eating = c * Predation",

"Death = m * Predator",

"Births.output = Prey",

"Births = r * Prey",

"Predation = (g * Prey) * Predator",

],

})

// Displays & Controls

lotka_1.defineSchema(’main_Table’, {

specifies: "Table",

proxy: "Table",

display: "[[Predator, Prey]]"

});

lotka_1.defineSchema(’main_Lotka-Volterra_Data’, {

specifies: "Graph",

proxy: "Lotka-Volterra Data",

type: "[TIMESERIES, SCATTER]",

connectDots: "[false, true]",

display: "[[Prey, Predator], [Prey, Predator]]"

});

// Aux

...

13

endProject(0.000, 100.000, 0.500, ’rk4’);

The first line creates the project. Next come bracketing commands beginProject and endProject.

Note that the defineSchema commands are methods of the project rather than global functions.

[Note: we are ignoring the Aux section since it only contains information concerning the appear-

ance and settings of the visual components]. The parameters passed to endProject create a clock

for this project, stored in the variable $clock$.

5.1 Running a Project

Projects can be run by clicking the Load Program/Exec Program buttons. They can also be run

in the console by typing

js> init();

js> run();

or simply

js> exec();

14

