
Intermediate and Advanced Modeling Techniques in Nova

Richard M. Salter

April 3, 2014

1 Introduction

The Nova modeling system is a powerful platform for building cross-paradigm simulations with high-

impact visualizations; success requires, however, that the user build up his or her ability to work with

Nova’s model design “language”, comprised of both visual and textual elements. Many interesting models

can be built solely using the visual language and a small amount of text. More complex models will require

a larger amount of text-based programming to specify the flow of data through the model’s components.

Fortunately, Nova’s Codechip component allows you to compartmentalize this code and maintain a visual

structure to the model’s design.

This document will show you how to build models using Nova’s aggregating components (CellMatrix,

AgentVector, NodeNetwork, SimWorld) where there is significant interaction among the constituents. It

will also demonstrate the use of Clocked Chips for sensitivity analysis and data collection over multiple

runs. To start, only basic programming skills are assumed, as outlined below. Some of the later sections

will expect a deeper understanding of program design, and references are provided for further reading on

these subjects.

2 Prerequisites

Before reading this document you should be familiar with the techniques of stock-and-flow systems

dynamics modeling in Nova, and the use of chip-based submodels, as presented in the tutorials in Sections

1 and 2 of the Nova Tutorial, http://www.novamodeler.com/tut/. It will also be useful to look at

Tutorial Section 3, even if it is not completely clear; much of that material will be included here.

3 Background

This section introduces the key ideas and terminology used in Nova model programming. It will prepare

you for the examples that follow.

1

http://www.novamodeler.com/tut/

3.1 Operational Semantics

This refers to the behavior of the Nova simulating engine. To fully appreciate Nova design concepts, you

should first know something about how it works.

Each simulation uses a clock to sequence its steps. The clock maintains a current model time, starting

at a specific start time (usually 0) and end time, and incremented at each step by a delta value called

dt.

Each step, or iteration represents the progress of the system from its state at time t to its state at time

t+ dt. The state of the system is comprised of the values of all Stocks and local variables in all Capsules

used by the simulation. The user must choose an integration method , which determines the process by

which Stocks representing continuous functions are updated.

At the beginning of the iteration model time is t, and by the end it has been updated to t+dt. During the

iteration the computation “bootstraps” by drawing on previously computed values to compute the next

generation. Depending on the integration method, model time may be updated incrementally through

several substeps, however in systems dynamics models all processing is complete once model time has

reached t + dt. This may not be the case for other simulation types. Consequently, you will notice that

some components (Commands and Codechips) provide a choice of pre-update or post-update for when they

are to be executed. Those selected for pre-update use component values at t (or intermediate points,

depending on the integration method), while those selected for post-update use the newly computed

values for t + dt.

An iteration consists of a sequence of strobes, which are actions taken at a step or substep, followed by

post-processing , which is performed once at the end of the iteration when the clock has been updated to

t + dt. Here is a simplified summary of Capsule iteration:

Strobe

• Strobe aggregates and chips

• Strobe stateful plugins (explaned below)

• Strobe Stocks (i.e. compute their next values)

• Strobe pre-update code chips, Commands and converter plug-ins

• Update clock

Post Processing

• post-process aggregates and chips

• Strobe post-update Codechips and Commands

2

• Update displays and display plug-ins

• Perform any cleanup

3.1.1 Plug-in types

In Nova plug-ins are used to extend the basic component platform with special functionality. In order

for plug-ins to function properly we must distinguish 3 different types:

display: Some plugins, such as Raster and AgentViewerX, are used for visualization; they will want a

post-update strobe to receive the latest data.

stateful: A second group have state values that are used to compute the values of Stocks. They need

to be updated before any processing of Stocks during the cycle. An example of the latter is the

Perceptron plug-in, which models a multiple layer neural network.

converter: A third class use the current state to produce the next, like Terms and Flows. These need

to be strobed pre-update.

Plug-in type is determined by the plug-in designer and cannot be changed.

3.2 Programming

All running Nova simulations are expressed in a language called NovaScript . Even in the simplest stock-

flow model, you are already writing NovaScript code when you enter expressions for initial Stock values,

Flows, and Terms (we’ll refer to these as component definitions). For these models, however, the code

is generally restricted to simple numerical expressions. You will see that to express the relationships

required of complex models your definitions will necessarily include a broader set of expressions.

NovaScript is an extension of a well-known and widely used language called JavaScript . This means that

NovaScript uses JavaScript syntax for all of its code; moreover, any legal JavaScript program is also a

NovaScript program. This includes the code used for initial Stock values, Flows and Terms. Fortunately,

there are many good sources for learning to program in JavaScript. We will review a few important ideas

about programming as it applies to building Nova models below.

3.3 Statements, Commands, Expressions

Programs consist of one or more statements that operate on data values. The latter are expressed either

as constants or variables. Statements are divided between expressions, which compute a value using

operators of various sorts (e.g., the arithmetic operators +,−, ∗ and /); and Commands, which change

the state of the program by assigning values to variables, or by performing some side-effecting operation

(e.g. “print”).

3

The values used in a program are categorized according to their datatype. Virtually all programming

languages include one or more numerical types (e.g., integer and reals, also called floating point). Another

common datatype consists of textual data, which are called character strings, or just strings. Finally,

languages generally provide some means of combining multiple values into a single entity. These in-

clude arrays, which are sequences of values indexed by integers; and structures or objects, in which the

constiuents are labeled by string property names1.

3.4 JavaScript

JavaScript2 has become a prominent language if for no other reason than its role as the standard for

programming the behavior of Web browsers. Here is a brief list of JavaScript highlights which will be of

particular use in NovaScript . While this review is not enough to teach you how to program, it will help

you to understand much of the later content of this document.

3.4.1 Variables

Variables are declared using the var keyword:

var x = 17, y = "hello";

var y;

In the latter case y is initialize to undefined . Variables are not restricted by datatype and can be assigned

a value of any JavaScript type.

3.4.2 Datatypes

• floating point (i.e. real) numbers: 1, 3.14, 2.78e01

• character strings: "This is a character string", "So is this".

• arrays:

In JavaScript arrays are lists, or sequences, of values indexed by an integer argument. An empty

array is created using the new keyword as follows:

var a = new Array();

Array constants are denoted using square brackets; e.g., var b = [1,2,3,4]. Similarly, array

components use square brackets to denote the index for assignment and access; e.g., b[0], b[1].

Unlike most languages, however, the index set may contain holes; e.g., b[0], b[1], and b[7] may

be defined while b[2] through b[6] are not.

1also sometimes called fields
2Don’t confuse JavaScript with Java, which, though similarly named, is a completely different language.

4

• objects:

Every other datatype in JavaScript is an object . The simplest of these is the Object type, which

consists of a list of fields. Each field contains a property name labeling a value. A property name

must be a string, but the corresponding value can be of any type. When an object field value is a

function (see below) we call that function a method . Once again, the new keyword can be used to

construct an empty object, to which name-value pairs can be added:

var c = new Object();

Object constants are denoted using curly brackets enclosing the name-value pairs, and may included

embedded object constants as values:

var a_person = {name: "Steve",

date_of_birth: {month: 1, day: 28, year: 1980}

}

• functions:

Functions are unique in that they are both a datatype and contain actual executable code. JavaScript

is one of a small number of computer languages that allow you to treat functions this way (some-

times called first class treatment). Consequently you can create a function, store it in an object or

array, and pass it as data to another function where it can subsequently be executed. This kind of

expressiveness turns out to be very useful for constructing complex Nova models.

Functions are defined using one of two similar syntaxes:

var double = function(x){return 2 * x;}

function triple(y){return double(y) + y;}

The first case allows you to create a function without the necessity of providing a name. For

example, if

var apply_to_two = function(f){return f(2);}

Then invoking apply_to_two(function(z){return z * z;}) will result in 4. This also shows

that functions may be passed as parameters to other functions.

3.4.3 Program structures

JavaScript adapts the structure of the C and C++ languages for its code. Common control structures

(i.e. coding structures that direct the flow of the program) include conditionals, for-loops and while loops.

One particularly useful version of the for-loop specific to JavaScript has the following form, assuming

variable a refers to either an array or object:

for (var i in a) {

print(a[i]);

5

}

The index variable i will cycle through all defined indices in a.

Another important feature involves the conditional, or “if” statement. Suppose we want to assign the

maximum of x and y to z. One way would be

if (x > y) {

z = x;

} else {

z = y;

}

This familiar statement is called a conditional command because it provides a pair of alternative com-

mands, only 1 of which is actually executed, depending on the outcome of the conditional test.

An alternate way of doing the same thing uses the conditional expression:

z = (x > y) ? x : y;

The right hand side expression produces one of a pair of values again depending on the outcome of

the conditional test. This form is particularly useful in creating the Nova expressions that appear in

component definitions.

3.4.4 Primitive operators

Actual computation (i.e., combining and manipulating data to create new values) is performed by

JavaScript’s primitive operators, or primops. The most familiar primops to most people are the standard

arithmetic operators (+, −, ∗, /). JavaScript provides additional mathematical operators via the Math

object. This is a special object whose properties are bound to various mathematical functions. For

example, Math.sin(x) computes the triganometric sine of the value of x. A reference to the complete

listing of available Math primops is provided in Section 14.

A second large set of primops is provided by the underscore.js library. These functions are all properties

of a special object denoted by the underscore character, _, and are documented on the library’s Web page

http://underscorejs.org. For example, _.last(a) will return the last element of the array a.

In addition to these, NovaScript adds a set of primops specifically germaine to modeling. These will be

discussed more fully below.

3.4.5 Environments

The body of a JavaScript function may contain variables other than the formal parameters used to pass

data into the function. These so-called free variables must obtain their values from some place other than

6

http://underscorejs.org

from within the function itself. We call the source of variable values used during evaluation of a function

the environment in which that function is evaluated. JavaScript has a complex scheme for looking up

variable values, however it is worth noting that the JavaScript object, with its property-name/property-

value structure, is a perfect candidate to serve as an environment data structure, and JavaScript makes

ample use of this fact. We will discuss environments further as needed.

3.5 Programming and Nova

As mentioned above, a complete Nova model is expressed in NovaScript . You create the program for

this model when you click the Capture button. Nova is able to construct the scaffold for your model

using the structure of the visual elements placed on the canvas. As author you are expected to provide

the details connecting the various components through the component expressions. In systems dynamics

models component expressions generally operate solely on numerical data; i.e., they are simple arithmetic

expressions.

As you extend your use of Nova into more complex applications the coding used to link components will

also become more complex. This complexity manifests along the following dimensions:

• The data structures used. Simple applications can rely on simple numerical data. For more

advanced use you will need to introduce arrays and objects, and may also want to create your own

functions.

• The program structures required. Multi-line computations involving loops and conditionals

generally accompany the use of data structures such as arrays and objects.

• The use of primitive operators. Models using Nova’s aggregating components rely heavily on

primops. You will need to become familiar with these primops and how they provide necessary

information to the constituents of the aggregators.

3.6 What is NovaScript?

As mentioned above, NovaScript is embedded in JavaScript. Precisely, this means that NovaScript is

JavaScript with additional functionality and special objects. The concept of extending the JavaScript

core with special objects is not new. In fact, we’ve seen that JavaScript itself does this with the Math

object, used to bundle together a substantial set of mathematical functions3. In order for JavaScript to

control the behavior of a Web browser, the JavaScript environment is extended with a Document4 object

that contains fields specifically designed for Web browser functionality.

NovaScript similarly extends JavaScript with a set of object specifically engineered to express the design

of Nova. Thus there are Stock , Term and Flow objects corresponding to those components in a visually

3Similarly, there is a JavaScript Date object used to contain date and day-of-week data
4For this reason, the JavaScript Web browser environment is often called the document object model , or DOM.

7

rendered Nova model. We call these component objects. Moreover, there is a Capsule representing an

entire model or submodel, referencing all of its constituent parts. There are also Table, Graph, Slider and

Spinner objects for input/output, and a single NovaScript object type, VPlugin, acting as a surrogate

for every type of plug-in.

3.6.1 Simulators

The Capsule is one type of simulator . A simulator is a container whose components are programmed

to interact, creating a runnable simulation. The other NovaScript simulators are the four aggregating

components described in Section 6; A Capsule can contain Stocks, Flows, Terms, Commands, Codechips,

etc., but also any of the simulator types (a chip is just a Capsule contained in a parent Capsule).

Aggregator components (called members), however, must be Capsules.

Note that components such as Stocks, Terms and Flows do not contain other components as constituents.

We’ll use the term base components to distinguish Stocks, Terms and Flows from simulators such as

Capsules, CellMatrices and AgentVectors.

Except for the top level Capsule, every simulator is the component of some other simulator. For example,

Capsule A may contain a chip containing an instance of Capsule B. Capsule A may also contain one of

the aggregators, and that aggregator will contain instances of Capsule C. We use the terms container

and component to describe this relationship. Every simulator in a model has a container except for the

top-level Capsule.

In order to actually carry out a simulation, a simulator must be associated with a clock . With two

exceptions a simulator’s clock is used by all of its components, so that only a single top-level system clock

is required. However, new clocks are introduced with Clocked Chips, and when running in batch mode.

See Section 5.

3.6.2 Component Objects and State Objects; the Self property

As mentioned above, components such a Stocks, Terms, Floats; but also simulators such as Capsules,

CellMatices, etc. are represented in NovaScript as JavaScript objects called component objects. Compo-

nent objects provide the computational mechanism for carrying out simulations. As a simulation proceeds

each of these objects provide access to its current value through the value() method.

Each type of simulator object provides a way of accessing the component objects of its constituents. In

the simplest case, a Capsule points to each of its components by name. CellMatrices, AgentVectors, Sim-

Worlds and NodeNetworks also have methods that produce the component objects of their constituents.

Consequently the complete state of any simulator can be found by traversing its structure to extract the

value() at all the Stocks, Flows and Terms.

NovaScript however, provides a simpler approach: each simulator has a Self property that references a

8

special state object, in which base component names are bound to the current values of those components.

The values in these state objects change as the simulation progresses. If a simulator is not at the top-level,

then the state object of its container is the value of the property Super5. One can follow the chain of

container state objects all the way to the top-level by using Super, Super.Super, etc.

A Capsule’s Self object binds the name of each base component to that component’s current value.

This Self object also binds the name of each simulator component contained in the Capsule to that

simulator’s Self object. The Self object of a simulator provides methods to access the Self objects of

its components.

These state objects are the most convenient way to view the current state of a simulation, and they

play a crucial role in supplying values for component computations used to update that state at each

iteration. Consequently, most of the primops used to discover values of components in aggregators do so

by supplying state objects for those components rather than component objects. If an actual component

object is required, it can be retrieved as the value of the property self . You should rarely need to use

this, however.

3.6.3 Scenarios

When you capture a visual model Nova creates a set of special objects called scenarios that define every

element of the current project. Each scenario describes either a Capsule, graph, table, cell matrix, or

some other complex entity. Since we are actually writing JavaScript, each scenario is in fact a JavaScript

object with various fields containing the descriptions of constituent parts. Included are the component

definitions that you provide when creating the model. When a project is loaded, these scenarios provide

the blueprints for construction the actual NovaScript objects. When a NovaScript program is run, the

objects come to life and produce the expected simulation.

For those familiar with object oriented programming, the scenario serves as a class definition for the

creation of NovaScript objects. As we shall see below, the Nova Codechip component is a tool for

method definition in such a system.

3.6.4 Universal properties and primops

An NovaScript property is a symbol that represents a single constant value throughout the execution of

a Nova program. Properties can be defined in several ways, as detailed below.

In Section 6 we introduce aggregating components, which are distinguished by their introduction of

special properties and primops. Those properties and primops may be used in Capsules contained by

the aggregator, but are generally not meaningful outside of the aggregator environment, and their use

5These names are chosen for historic reasons, and also because they are not likely to conflict with the names of some

actual components.

9

may cause errors. To distinguish those from properties and primops that may be used anywhere, we’ll

refer to the former as restricted and the latter as universal . When describing a primop, we will always

distinguish it as either universal or restricted.

Lists of all properties and primops, both universal and restricted to one or more aggregator, are found

in Appendix B and at http://www.novamodeler.com/wiki/help-2/ns/ref/primops/

3.6.5 Special NovaScript objects

NovaScript also implements several special objects, including the Clock object (Section 5.1), Coord object

(which models a pair of matrix coordinates with fields for row and column) and RunData object, which

contains the history of a Stock’s value over an entire run. These objects will be discussed as they are

introduced in the sequel, and summarized in Appendix C.

4 Extending the model with code

In simple models your coding responsibility is generally limited to the arithmetic expressions used for

component expressions; all other programmatic content is expressed through the semantics of the com-

ponents themselves; i.e., what they represent and how they operate. One part of extending Nova is

introducing more complex components, which we will do in Section 6. However, a second requirement

is the addition of algorithms and other programmatic computations that go beyond simple arithmetic

expressions. Nova has several ways of integrating new code into the existing visual structure. The most

important of these is the Codechip. A Codechip is like a new component designed to operate on the

content of a particular model. However, many Codechips express computations as universal as Nova’s

hard-wired components, and so can be reused in multiple settings. We introduce Codechips in Section

4.2 and show some simple designs.

Other ways of extending the model with code by using more elaborate code for component expressions

(Section 4.1), and with code entered into the Nova Programming Window. The latter is used to define

global constants, variables, and functions; and local properties, variables and methods. This will be

discussed in Section 4.3.

4.1 Component expressions

Component expressions are often a single line of mathematical code; e.g.,

rate * population

(TIME() < 100) ? x : y

You may, however, use any sequence of commands, separated by semicolons, followed by an expres-

sion:

10

http://www.novamodeler.com/wiki/help-2/ns/ref/primops/

a. b.

Figure 1: Codechip prodquo: a) Program Code Dialog; b) Chip with pins

<command 1>; <command 2>; ... <command n>; <expressions>

This is most often seen when using print statements for debugging (See Section 13):

var ans = rate * population;

print(ans);

ans

4.2 Codechip overview

A Codechip is added to Nova’s design canvas like any other component; Unlike other components, a new

Codechip is a blank slate. It has no built-in content. Any benefit must come from the programming that

it includes.

Right-clicking on a Codechip produces a menu with two options: Program Code and Inputs/Outputs.

If you select the former you will open a dialog box that closely resembles the Set Property dialog of

other components. The Program Code dialog includes 3 panes not present elsewhere: Inputs, Outputs

and fields. Let us consider only the former two for now. The basic mission of a simple Codechip is to

compute 1 or more output values given a set of input values. In these two panes you respectively list

the names of input and output variables; these can be any legal variables and are only meaningful in the

context of the Codechip.

Figure 1a shows the Program Code dialog for a simple Codechip called prodquo that accepts 2 numbers

and outputs their product and quotient. Note that the inputs and outputs are separated by spaces (not

commas).

11

Figure 2: Codechip average Program Code

When you close this dialog the Codechip resembles Figure 1b. The 4 pins correspond to the 2 inputs and

2 outputs and are readily connected using the Inputs/Outputs dialog, as you would connect an Capsule

chip.

When you open the Codechip pallet notice that prodquo is listed. Dragging from this list to the canvas will

produce a second instance of prodquo. (The components use sequence numbers to distinguish Codechip

instances). Editing either of these will cause the changes to appear in both – they are two instances of

the same function.

This type of Codechip, called a functional Codechip, is the most common and easiest to write. The

code window many contain any legal NovaScript code. Important: make sure you assign results to the

output variables.

Figure 2 shows a typical application of Codechips: computing the average of a list of numbers. The input

numList must be an array consisting of numbers only. This Codechip could be used in several places in

a given model, and exported for reuse in other models.

In addition to the functional Codechip form, there are two others: object Codechips and function-builders.

These will be discussed in Section 12.

4.3 Using the Programming Window

Each submodel places its own content in the Programming Window (just as it does for the Modeling

Canvas and Dashboard). This content may contain up to 4 segments of code, as shown in Figure 3. The

12

Figure 3: Programming Window Segments

segments are determined by the placement of the labeled dashed lines, as shown (4 or morel dashes to

the left of the label are required; any number may follow). Not all segments are required, and, except

for the Global segment, they may be in any order.

Any legal NovaScript code can appear in the Global segment. The remaining segments must follow a

strict form that resembles the definition of an object constant:

<name 1>: <value 1>,

<name 2>: <value 2>,

...

Note that the final comma is required. Examples will be given below.

Global segment: Code in this section transfers exactly as written into the NovaScript program upon

capture. This code is executed when that program is loaded, and so should consist of global

constants, functions and any required initialization steps. Global segment code can appear with

any Capsule, but since the code is global it can be referenced from any Capsule. Stylistically, it is

probably best to only include global code in the top level model.

Properties segment: This and the remaning segments introduce local bindings that are only visible in

the current submodel. Properties are identifiers that are bound to values at the beginning of a run

and do not change throughout the run. Here is an example properties segment:

init_x: cols * RANDOM(),

init_y: rows * RANDOM(),

population: 50,

13

Properties may also be created using Term components in which the Property box has been checked.

Local variable segment: Local variables are similar to properties, however their values may be changed

during the run of the program. The format of their declaration is the same as that of properties:

u: 100,

v: 3.14,

In this case 100 and 3.14 are initial values for u and v, respectively.

Stock components generally play the role of local variables in model designs, however it can be

convenient to define a few local variables to facilitate communication among interacting Capsules.

Local variable assignment should only occur in a post-update Command.

Methods: Methods are functions local to the Capsule. An example definition would be

fact: function(n){if (n == 0) return 0; else return fact(n-1);},

Methods may refer to Capsule components, properties or local variables.

The role of method has been subsumed by the Codechip, and so it is only being included here for

completeness. You should not need to define any.

5 Clocks and Clocked Chips

In Section 3.6.1 we discussed the need to associate a clock with each simulator. The clock’s function is to

keep track of model time and to sequence the cycle of strobes that update the simulation. The clock is

programmed with values for start and end times, update interval (dt), and integration method. Most of

the time a single system clock suffices, maintaining a uniform synchronized processing environment.

A chip designated as a Clocked Chip introduces a new clock with its own parameter settings for use with

the chip’s Capsule. Each strobe on the clock of the chip’s container corresponds to a complete run of the

chip’s clock. The effect is to synchronously subdivide the container’s update interval.

Clocked Chips are particularly useful for sensitivity analysis, and to help facilitate this Nova provides a

batch mode, which creates the necessary Clocked Chip structure for repeated runs over sets of parameters.

Clocked Chips and batch mode are illustrated in Section 12.1.

5.1 Clock object

It may be necessary to read clock parameters and actually perform clock operations from within the

program. The most common example of clock access is the TIME primop, which returns the current

model time on the current clock and within a Clocked Chip, the SUPERTIME() primop will do the same

for the clock of the container. There are also primops SIMSTART, SIMEND and SIMMETHOD for

14

obtaining the other clock parameters.

Clock objects for the current and container clocks are returned using the CLOCK() and SUPERCLOCK()

primops. Method calls supported by this object are described in Appendix C.2

6 Nova Aggregating Components

Abstraction is the process of extracting a set of interacting elements which together create a well-defined

computation over a given a set of inputs, and providing the ability to access that computation with

different inputs from multiple points within the overall project. The simplest example of this in Nova is

the Capsule which is used in one or more chips to implement the instances of a particular submodel.

Chips are less useful when large numbers of submodels are required. In such cases it is more efficient to

use some form of container to hold a set of Capsule elements. This is analogous to using arrays to manage

large sets of data. Like the array, an organizing structure (i.e., the index set) is required to provide a

uniform means of access to these constituents.

We can actually take this one step further by adding a set of properties and primitive operators that

enforce a topological structure on the Capsules. For example, if we organize the Capsules into a two-

dimensional lattice, each could represent a single cell in a cellular automaton. In order for this to be

of any value, however, each cell must be able to identify its own coordinates and have some means of

communicating with other cells in the lattice.

This is the role of Nova’s aggregating components: 1) organize and provide access to a (possibly large)

set of constiuent Capsules; and 2) provide a set of properties and primops that foster information trans-

fer among those constituents. Using this fundamental design the four aggregating components currently

available with Nova provide different topological organizations for their elements. Here are brief descrip-

tions (note: all example properties and primops are restricted):

CellMatrix Organizes its constiuent set into a 2 dimensional matrix or cells, with each assigned a row-

column coordinate pair. Example property: Coords, which is bound to a Coord object6 containing

the row and column of the caller7. Example primop: RING(n), which returns the array containing

the coordinates of all neighbors n units away from the caller.

NodeNetwork Organizes its constiuent set into a 1-dimensional array of nodes. Each node is as-

signed a node number and contains a Capsule instance and a set of weighted pointers referencing

other nodes. Example property: myId, which returns the caller’s node number; Example primop:

CONNECTIONS IN returns a list of Objects, each containing the id and weight of a connection to this

node.

AgentVector Organizes its constiuent set into a 1-dimensional array of agents. Each agents is assigned

6A Coord object is one containing the properties row and col.
7by caller we mean that Capsule instance that is making the reference.

15

an agent id and contains a Capsule instance. Each agent is equipped to record its location as a pair

of x-y coordinates. Example property: myId, which returns the caller’s agent id; Example primop:

MOVE(x, y) sets the current location of its caller to (x, y).

SimWorld Combines the topological spaces created by the CellMatrix and AgentVector aggregators

into one that maps the (x, y) location of each agent to position within a cell. In this topology each

CellMatrix is the size of a unit square, and so an agent with x-y coordinates (x, y) is mapped to the

cell with row-column coordinates (r, c), where r = Math.floor(y) and c = Math.floor(x)8. Example

property: rows is bound to the number of rows in the underlying CellMatrix (can be called from

either a cell or an agent). Example primop: MYAGENTS() returns the list of agents currently within

the calling cell.

7 Using CellMatrices

We are now ready to build a model using a CellMatrix. We will use the Firespread model found in the

Model Library as our example, however our implementation will differ slightly from the one in the Model

Library. Recall that this model views each cell either as a tree or firewall. Trees can be in one of 3

possible states: unburned, burning or burned. The firewall is represented as the fourth cell state.

At each iteration each tree cell determines its next state based on the state of its 8 (Moore9) neighbors

and are summarized with the following rules:

1. If the current cell is unburned, determine if any of its neighbors are burning. If so, then the current

cell will randomly either burn or remain unburned;

2. If the current cell is burning, it becomes burned;

3. If the current cell is burned, it remains burned

4. A cell that is part of the firewall remains unchanged.

This model has a main level and one submodel called Treecell. The latter will be the Capsule type used

to populate the Forest CellMatrix. Create this submodel by clicking the New Sub Model button on the

toolbar. Save the project as Firespread, so that the main model has that name.

7.1 Creating the cell submodel

Next we will develop the Treecell submodel, which represents a single tree. We’ll let the 4 possible cell

states be represented by the integers 0 through 3. It is convenient to assign these values as constants

8Math.floor maps a real number to the largest integer less than that number; e.g., Math.floor(3.5) = 3.
9Moore neighborhoods consist of the 8 immediate neighbors of a cell in a cartesian lattice; the Von Neumann neighborhood

only contains neighbors directly above, below, or to the left or right.

16

so that we can refer to them in a meaningful way. In the Programming Window insert the following

code:

const unburned = 0,

burning = 1,

burned = 2,

firewall = 3;

Drag a Stock called tree onto the canvas. This Stock will assume one of these 4 values throughout the

simulation. Now drag a Flow called next and attach its output to tree. Right-click on tree and check

the Discrete checkbox. Next drag an input pin called Init and an output pin called State, attaching

them to tree as shown:

Right click on tree and make its initial value equal to Input; similarly make State’s value equal to

tree.

It remains to program the logic that determines how tree’s state changes. This is complicated by the

need to consult with the cell’s neighbors to determine if any are burning. Consequently, for each cell we

will use a Term called neighbors to hold an array consisting of state objects from that cell’s immediate

neighborhood. Fortunately a cell’s neighborhood doesn’t change, so we only need compute this array

once, and so we can check the Property checkbox in neighbors10.

Add the Term neighbors and check its Property box. The list of neighbors can be created a single line

of code:

_.map(RING(1), function(coords){return CELL(coords);});

Let’s take a moment to analyze this:

• The primop call RING(1) produces the list of coordinates for the 8 Moore neighbors of the calling

cell.11

• The primop CELL takes a pair of coordinates and returns the state object of the cell at those

coordinates.

• The primop _.map applies a function to each element of an array and returns the array of results.

Example:

10Recall that by checking the Property checkbox in a Term it becomes a property; i.e., it computes its value only once.
11This version does not wrap; if the caller lies on the boundary it will have fewer neighbors.

17

Figure 4: Codechip burnComputation Program Code

_.map([1,2,3,4,5], function(x) {return 2 * x;})

produces

[2,4,6,8,10]

Consequently, our use of _.map produces a list of state objects from the list of coordinate objects.

Now that we have this list of neighbors can program the state logic. Add a Codechip called burnComputation

to the canvas and set up its inputs, outputs and code as shown in Figure 4.

Inputs myNeighbors and PrBurn will be connected respectively to the neighbors Property we just created,

and to an input containing the probability of burning. current and next are the current and next states,

respectively.

The logic makes use of the function _.some, which applies a function to each element of a list and returns

true if at least one of the results is true. Here we’re testing to see if any of the neighbor trees by checking

the burning field of their state objects.

Add a datainput PrBurn and connect it, neighbors and tree to the appropriate pins on burnComputation

1. Initialize PrBurn to 0.3, which will be the default burn probability.

The completed Treecell should look like Figure 5. We will return to the main level to complete the

program.

18

Figure 5: Completed Treecell Capsule

Figure 6: Forest Viewer Properties

19

Figure 7: Final Version of the Main Capsule

7.2 Completing the Main Capsule.

To complete the program:

1. Add a CellMatrix called Forest from the component pallet to the canvas.

2. Set the number of rows and columns in Forest to 50.

3. Add a Raster called Forest Viewer from the plug-in pallet to the canvas.

4. Connect the State output from Forest to the In input on Forest Viewer.

5. Connect the Out output from Forest Viewer to the Init input on Forest.

6. Initialize the properties of Forest Viewer as in Figure 6.

7. Add a burn probability slider, and initialize your program as in Figure 7. It is now ready to be run.

20

********* To be completed; other topics may be added ********

8 Using AgentVectors

9 Using SimWorlds

10 Using NodeNetworks

11 Using the Console to Interact with Nova

12 Advanced Programming Techniques

12.1 Playing with the clock

13 Debugging

14 References

21

Appendix – Quick Reference

A JavaScript

A.1 Datatypes

Numbers: 3.1, 17, 2.78e2

Strings: "A string is text enclosed by quotes"

Objects: obj = {x: 0, y: "text"}

obj.x == 0, obj.y == "text"

Each entry is called a field or property-name/property-value pair.

Arrays: a = [6, "howdy", {x: 0, y:1}],

a[0] == 6, a[1] == "howdy", a[2] == {x:0, y:1}

Functions: f = function(x, y) {return 2 * x + y}

A.2 Program structures

Loops:

var x = 0

for (var i = 0; i < 10; i++) {

x = x + i;

}

var a = new Array();

...

for (var i in a) {

a[i] = a[i] + 1;

}

Conditional Command

if (x > y) {

z = x;

} else {

z = y;

}

Conditional Expression

z = (x > y) ? x : y;

22

B Property and Primop Reference

In the following the arguments s, s1, ... denote string values, n,m denote integer values, and t, x, y, z

denote real values. Additionally, time denotes current model time, and dt the current delta value.

Arguments enclosed by brackets are optional.

Some of these are deprecated, which means they will be dropped in future versions of Nova. In each case

a replacement property/primop is provided.

B.1 Universals

These may be used anywhere.

Primops

ALERT(s) Displays message s in a dialog box.

BASEDIR() Returns the current model directory. Available as of Release 12.

BINOMIAL(n, p) Returns a random number from the binomial distribution with n trials and

success probability p.

COS(x) Returns the trigonometric cosine of x. Deprecated : use Math.cos.

COLUMNSPLIT(tab) tab is a 2-dimensional array derived from a table, where the first row contains

column headers. Returns an object in which each property name is a column

header with property value an array comprising the corresponding column.

COSWAVE(x y) Returns: x ∗ cos(2πty), where t is the current time.

COUNT(f, a) f is a function of one argument that returns a boolean value and a is an array.

Applies f to each element of a and returns the number of times f returns true.

CLOCK() Returns the current clock as an object. Clock objects are discussed in Section

5. Available as of Release 12.

CVSTOMAT(csv) csv is string consisting of a sequence of lines, each of which is a comma-separated

string of values. Returns a matrix (i.e., 2-dimensional array) containing the

values.

DELAY(c, x, [y]) Returns the value of component c delayed by x time units (i.e. at time − x).

c is a string naming a Stock. Optional y is returned if the current time is less

than x. If y is omitted then 0 is returned.

23

DERIVN(c, n) c is a string naming a Stock or Term. Returns the value of the nth

derivative of c at the current time, with precision based on the value

of dt.

DISTANCE(x0, y0, x1, y1) Returns Euclidean distance between points (x0, y0) and (x1, y1).

DT() Returns the current delta (i.e., dt) value

LOAD(l) l is a list of JavaScript or NovaScript filenames contained in the

current model directory. Each is loaded into the runtime system.

Should be part of simulation initialization.

Math.XXX The JavaScript Math functions and constants; see https:

//developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/Math.

NORMAL(x, y) Returns a random number from the normal distribution with mean

x and standard deviation y.

POISSON(lambda) Returns a random number from the Poisson distribution with density

lambda.

OPENREAD(filename) Opens filename for reading and returns a Java BufferedReader ob-

ject. The latter contains methods read and readLine to perform in-

put. See http://docs.oracle.com/javase/7/docs/api/java/io/

BufferedReader.html for complete details. Available as of Release

12.

OPENWRITE(filename) Opens filename for writing and returns a Java PrintWriter ob-

ject. The latter contains methods print and println to perform

output. See http://docs.oracle.com/javase/7/docs/api/java/

io/PrintWriter.html for complete details. Available as of Release

12.

PULSE(x, y, z) Returns x when current time is y, y + z, y + 2 ∗ z, etc.; 0 otherwise

RANDOM() Returns a uniformly distributed random number between 0 and 1.

Deprecated : use Math.random().

READFILE(path) path is a string designating a textfile. if path begins with “/” it is

treated as an absolute pathname; otherwise it is treated as relative

to the current model directory. Returns the content of the file path

as a string.

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
http://docs.oracle.com/javase/7/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/BufferedReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html
http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

RECONFIGURE(agg, map) agg must refer either to an AgentVector or SimWorld, and map must

be an object with property names matching initializable components in

the agg agent Capsule (i.e., properties or Stocks). Each property name

must be bound to an array of values, with each array at least as long a

the initial agent count in agg. RECONFIGURE reconfigures the initial agent

vector in agg by rebinding each of the properties named in map, matching

the agg agent vector to the values in the array bound to that property in

map. Available as of Release 12.

ROWSTOOBJS(tab) tab is a 2-dimensional array derived from a table, where the first row

contains column headers. Returns an array of objects, one for each non-

header row. In each object properties are column headers bound to the

entry for that column in the corresponding row.

SEED(x) Returns nothing; sets the seed of the random number generator. Should

be part of simulation initialization.

SIN(x) Returns the trigonometric sine of x. Deprecated : use Math.cos.

SINWAVE(x, y) Returns: x ∗ sin(2πty), where t is the current time.

SIMEND()

SIMMETHOD()

SIMSTART()

Returns simulation start time, end time and integration method, respec-

tively.

STEP(x, y) Returns the value of x if the current time is y or greater; 0 otherwise.

TIME() Returns the current model time

TRANSPOSE(mat) mat is a matrix (i.e. 2-dimensional array). Returns the transpose of mat.

TOTAL(f, a) f is a function of one argument that returns a number and a is an array.

Applies f to each element of a and returns the sum of values returned.

UNIFORM(x, y) Returns a uniformly distributed random variable between x and y.

.XXX The underscore.js library of useful functions. See http://

underscorejs.org.

25

http://underscorejs.org
http://underscorejs.org

B.1.1 Primops by category

Here is an index to the Universal primops according to a set of categorical types:

Control: ALERT, COUNT, DELAY, PULSE, STEP, TOTAL

Input/Output: BASEDIR, LOAD, OPENREAD, OPENWRITE, READFILE

Matrix: COLUMNSPLIT, CSVTOMAT, ROWTOOBJS, TRANSPOSE

Mathematical: BINOMIAL, COS, COSWAVE, DERIVN, DISTANCE, Math.XXX, NORMAL, POISSON, RANDOM,

SEED, SIN, SINWAVE, UNIFORM

Simulation: CLOCK, DT, SIMEND, SIMMETHOD, SIMSTART, TIME

Misc: RECONFIGURE, .XXX

B.2 Clocked Chip Primops

The following may only be used by a Capsule in a Clocked Chip.

SUPERCLOCK() Returns the clock associated with the container of the Clocked Chip.

Available as of Release 12.

SUPERTIME() R!eturns the model time of the container of the Clocked Chip. Avail-

able as of Release 12.

26

B.3 Cell Properties and Primops

The following may only be used by Capsules contained in a CellMatrix, or cell Capsule in a SimWorld.

row and col are integers representing row-column coordinates within the CellMatrix. coords is a Coords

object (see Section C.1). As of Release 12 all primops expecting coordinate pairs as parameters can either

be called with separate row-column arguments or with a Coords object.

Cartesian coordinates will generally be automatically wrapped ; i.e. if the coordinate space has dimension

rows × cols, then a negative value for row or col is treated respectively as rows + row and cols + col.

Values that exceed the dimensions respectively become row− rows and col− cols. This type of space is

topologically equivalent to a torus.

Neighborhood function BLOCK and RING come in two versions, one that includes wrapping (WBLOCK and

WRING), and one that treats the edges as boundaries (BLOCK and RING).

Properties

coords Object whose row and col properties respectively reference the

caller’s row and column coordinates within the CellMatrix.

rows

cols
Bound to the total number of rows and columns, respectively.

Primops

BLOCK(n)

WBLOCK(n)
Returns a list (array) of coordinate objects (i.e., containing row and

col properties) comprising the square block of cells n units away

from the caller or less. (WBLOCK is the “wrapped” version, which

treats the surface as a torus). Available as of Release 12.

CELL(row, col)

CELL(coords)
Returns the state object for the cell at the given coordinates, which

may be passed either as separate parameters or in a coords object

(See Section 3.6.1 for a discussion of state objects.) The fields of the

state object bind each of the Stocks, Terms and Flows in the cell to

the current value of the corresponding component.

CELLS() Returns the entire matrix (i.e., 2-dimensional array) of state objects

for the CellMatrix.

CELLS()[row][col] == CELL(row, col).

27

CELL VALUE(row, col, comp)

CELL VALUE(coords, comp)
comp is a String naming a Stock, Flow or Term in the cell Capsule.

Returns the current value of that component in the cell with the

given coordinates.

CELL VALUE(row, col, comp) == CELL(row, col)[comp]

RING(n)

WRING(n)
Returns a list (array) of coordinate objects (i.e., containing row and

col properties) for all cells comprising the square exactly n units

away from the caller. (WRING is the “wrapped” version, which treats

the surface as a torus). Available as of Release 12.

WRAP(row, col)

WRAP(coords)
Performs a “wraparound” of the coordinates if they exceed the size

of the matrix (or are negative). WRAP(row, col) Returns an array

containing the new row and column; WRAP(coords) returns a Coords

object containing the new row and column.

B.3.1 Hexagonal primops

The following should only be used if the cell matrix is in hexagonal mode.

HEXRING(n) Returns a list (array) of coordinate objects (i.e., containing row and col

properties) for all cells comprising the hexagon exactly n units away from

the caller.

HEXBLOCK(n) Returns a list (array) of coordinate objects (i.e., containing row and col

properties) comprising the hexagonal block of cells n units away from the

caller or less.

HEXPATH(dir, dist) Returns a list of coordinates comprising the path of length dist in the di-

rection indicated by dir. Directions are denoted by compass directions; i.e.,

"N", "NE", "SE", "S", "SW", "NW".

28

B.4 Agent Properties and Primops

The following may only be used by Capsules contained in an AgentVector. id is an integer representing

agent id of an agent.

29

Properties

myId Bound to the caller’s agent id.

birth Bound to the time at which the caller was created.

rows

cols
Bound to the total number of rows and columns in the space occupied by

this AgentVector.

Primops

AGE(id)

MYAGE()
Returns the age (i.e., time since birth) of agent id, or of the caller, respec-

tively.

AGENT(id) Returns a state object for agent id.

AGENTS AT(row, col)

AGENTS AT(coords)
Returns the list of agents located at specified cell coordinates.

AGENT COUNT() Returns the current total number of agents.

AGENT IDS() Returns the array of ids for currently living agents.

AGENT VALUE(id, comp) comp is a String naming a Stock, Flow or Term in the agent Capsule. Returns

the current value of that component in agent id.

AGENT VALUE(id, comp) == AGENT(id)[comp]

AGENTS() Returns the array of agent state objects.

CELL COORDS(id) Returns the row, col cell coordinates (of id , or of the caller if id is omitted)

in an object.

CREATE([init], [n]) Schedules the creation of a n new agents (n is assumed to be 1 if omitted).

init is an initializer object containing bindings for properties in the new

agent. These may include init x, init y and init heading, to indicate

the new agent’s initial position and direction. It may also include alternate

initialization expressions for Stocks, local variables and properties. If init is

omitted, the new agent is a clone of the caller. All new agents are created

at the end of the cycle.

KILL(id) Schedules the elimination of agent id. All agent eliminations are carried out

at the end of the cycle.

30

LOCATION(id) Returns the cartesian location (of id or the caller if id is omitted) in an object

with properties x and y. Also includes the heading as the value of property

theta.

MOVE(x, y) Moves the caller to cartesian coordinates (x, y).

SET HEADING(theta) Sets the directional heading of the caller to theta (given in radians).

WRAP(row, col)

WRAP(coords)
Identical to CellMatrix WRAP

31

B.5 SimWorld Properties and Primops

Cell and agent Capsules in a SimWorld may respectively use the CellMatrix and AgentVector properties

and primops described above.

The following may only be used by Capsules contained in a SimWorld.

B.5.1 Cell Capsules in a SimWorld

Cell Capsules may call the following agent primops:

AGENT

AGENTS AT

AGENT COUNT

AGENT IDS

AGENT VALUE

AGENTS

CREATE

KILL

Cell Capsules may call the following additional primops:

MYAGENTS() Returns the list of agents currently contained in the caller.

MYAGENT COUNT() Returns the number of agents currently contained in the caller.

B.5.2 Agent Capsules in a SimWorld

Agent Capsules may call the following cell primops:

CELL

CELLS

CELL VALUE

Agent Capsules may call the following additional primop:

MYCELL() Returns the state object of the cell containing the caller.

32

B.5.3 Hexagonal primops

The following should only be used by an agent if the cell component of the SimWorld is in hexagonal

mode.

HEXMOVE(dist, dir) Moves the calling agent distance dist in the direction dir. Direc-

tions are denoted by compass directions; i.e., "N", "NE", "SE",

"S", "SW", "NW".

33

B.6 NodeNetwork Properties and Primops

The following may only be used by Capsules contained in a NodeNetwork. id is an integer representing

node id of a node.

Properties

myId Bound to the caller’s node id.

count Bound to the number of nodes in the NodeNetwork.

Primops

CONNECTIONS IN([id]) Returns the array of connections into the node id (if id is omitted, it is

assumed to be the caller). Each connection is an object with 3 properties:

id, the node id of the source; strength, the raw strength of the connection;

and n strength, the normalized strength of the connection, where the total

strength of all connections into the caller is 1.

CONNECTIONS OUT([id]) Returns the array of connections from the node id (if id is omitted, it is

assumed to be the caller). Each connection is an object with 3 properties:

id, the node id of the target; strength, the raw strength of the connection;

and n strength, the normalized strength of the connection, where the total

strength of all connections from the caller is 1.

NODE(id) Returns a state object for node id.

NODE COUNT() Returns the total number of nodes.

NODE VALUE(id, comp) comp is a String naming a Stock, Flow or Term in the node Capsule. Returns

the current value of that component in node id.

NODE VALUE(id, comp) == NODE(id)[comp]

NODES() Returns the array of node state objects.

INFLOW([id]) Returns the total strength of connections into node js (if id is omitted, it is

assumed to be the caller).

OUTFLOW([id]) Returns the total strength of connections from node js (if id is omitted, it

is assumed to be the caller).

34

C NovaScript Objects

The properties and methods of special NovaScript objects are described below.

C.1 Coords object

Contains a pair of matrix coordinates for a cell (usually in a CellMatrix).

Properties

row the row value of the cell

col the column value of the cell

C.2 Clock object

This object provides properties and methods for managing a simulation clock. It is most useful in

Clocked Chips for getting information about clocks other than one associated with the chip (retrieved

using SUPERCLOCK()). The system clock is bound to the universal property $clock$.

The user should seldom need to refer to this object directly, as there are universal methods for retrieving

clock values. It is provided primarily for Clocked Chips that need to probe their super clocks.

Properties

high, low, dt, method, current: clock parameters.

35

D Glossary

A

active level The capsule of a model project currently selected in the Capsule Set pane and displayed in

the Model Canvas.

AgentVector An aggregating component that manages its members as agents moving over a cartesian

or hexagonal plane.

aggregating component Refers to CellMatrices, AgentVectors, SimWorlds and NodeNetworks. Mem-

bers of aggregating components must be Capsules.

B

base component Components such as Stocks, Terms, Flows, Commands, Codechips, etc., that do not

have sub-components. They can only be members of Capsules.

C

Capsule Prototype for a simulation unit. Capsules contain interacting base and aggregating compo-

nents, and chips, and may contain inputs and outputs.

capsule set The window of the Application Interface where the capsules of a model are listed.

capture A button that converts the visual representation of a Nova model into a script.

CellMatrix An aggregating component that creates a two-dimensional cartesian or hexagonal topology

with its members.

cellular automaton A type of spatially explicit model where space is represented as a two-dimensional

finite grid and each cell has a discrete state.

Chip A “wrapper” component which contains a single Capsule for membership in a parent Capsule.

Clock A special object for maintaining model time and providing strobe signals to the components.

Clocked Chip A Chip with which a new Clock has been associated. Each strobe on the Chip produces

a complete run of the enclosed Capsule instance based on the parameters of the associated

Clock.

Codechip A programmable component with user-specified inputs and outputs.

Command A Nova component containing executable code that changes the state of the program.

36

component expression One or more lines of code included as a component property that defines the

value of that component.

console The window of the Application Interface where you can enter NovaScript commands one at

a time.

container Simulator of which a component is a member (i.e., if A is the container of B, then B is a

member of A). Also called a parent.

converter plug-in A plug-in used to compute values used in updating the current state.

Coords Refers to a JavaScript object that contains fields row and col, representing matrix row and

column values.

D

delta value The amount of time between state updates; also called dt .

deterministic model A model where the outcome is fully predictable from the initial state (i.e., no

random effects).

display plug-in A plug-in used only for visualization.

dynamic systems model A model of a system that changes over time.

E

Euler Method A method of numeric integration that estimates P(t) as P(t-t) + P(t-t)t, where t is the

change in time. Pronounced “Oiler method”.

F

field A property-name/property-value pair in a JavaScript object. Also refers to a stateful variable

in a CodeChip.

G

global segment Section of the Programming Window containing global definitions.

37

I

identifier A text string (beginning with a letter) used as a property or local variable.

integration method Procedure used to iterate from t to t + dt when considering continuous functions.

iteration Step from time t to t + dt in the simulation.

L

local variable An identifier used as a variable within a specific Capsule instance.

local variable segment Section of the Programming Window containing local variables.

M

member Constituents of simulators.

method An object field that contains a function.

method segment Section of the Programming Window containing local methods.

model canvas The window of the Application Interface where the model is graphically designed and

built from components.

model time Local simulation time in units determined by the model.

Monte-Carlo A model involving an element of chance (i.e., randomness).

N

NodeNetwork An aggregating component that creates a network (i.e. mathematical graph) topology

in which its members are nodes.

NovaScript A scripting language that was created specifically for designing and running models. No-

vaScript is an extension of JavaScript.

P

parent Another name for a component’s container.

plug-in An extension to the basic component functionality.

38

post-processing (post-process) Actions required during the post-update phase.

post-update Actions taken after the current state is changed during an iteration.

pre-update Actions taken before the current state is changed during an iteration.

primop Short for primitive operator ; a built-in JavaScript or NovaScript function.

Programming Window The section of the Nova interface in which the user may add code.

project All of the capsules, functions, clock settings, etc. associated with a model. When you open

Nova, you are working on a project.

property An identifier whose value is fixed throughout the simulation.

property segment Section of the Programming Window containing local properties.

R

RunData A special NovaScript object that contains all of the output from a Stock during a complete

run. Used to accumulate statistics.

Runge-Kutta 2 Method A method of numeric integration that employs a correction to each Euler

method estimate.

Runge-Kutta 4 Method A method of numeric integration, where each approximation is weighted av-

erage of four estimates.

S

scenario NovaScript object used for defining a component. Acts like a class declaration for NovaScript

objects.

self state object binding referencing the component object.

Self Pointer to the state object of a simulator.

simulation A sequence of state transitions from a start time to an end time using a fixed time increment,

dt.

simulator Capsules, CellMatrices, AgentVectors SimWorlds and NodeNetworks, all of which have con-

stitutent members.

SimWorld An aggregating component containing a CellMatrix and AgentVector, in which the CellMa-

trix serves as the cartesian or hexagonal space in which the AgentVector’s agents exist.

39

start time Point in model time when the simulation starts (usually 0).

state object A special object referenced from Self in a simulator. For Capsules, it contains the current

value for each member; for aggregating components it provides methods for obtaining the

state object of members.

stateful component A component that keeps track of its value over time (e.g., Stock).

stateful plug-in A plug-in with state-values that persist between iterations.

stateless component A component that is only aware of its current value.

stochastic model A model that exhibits random effects.

strobe Action taken by each component at each iteration.

super component object binding referencing an object’s container.

Super Pointer to the state object of the container of a simulator.

U

underscore.js A library of very useful functions included in NovaScript ; see http://underscorejs.org.

W

wrap The practice of treating coordinates outside the dimension of a cartesian space as continuing

from the opposite boundary. The resulting space becomes a torus topologically.

40

http://underscorejs.org

	Introduction
	Prerequisites
	Background
	Operational Semantics
	Plug-in types

	Programming
	Statements, Commands, Expressions
	JavaScript
	Variables
	Datatypes
	Program structures
	Primitive operators
	Environments

	Programming and Nova
	What is NovaScript?
	Simulators
	Component Objects and State Objects; the Self property
	Scenarios
	Universal properties and primops
	Special NovaScript objects

	Extending the model with code
	Component expressions
	Codechip overview
	Using the Programming Window

	Clocks and Clocked Chips
	Clock object

	Nova Aggregating Components
	Using CellMatrices
	Creating the cell submodel
	Completing the Main Capsule.

	Using AgentVectors
	Using SimWorlds
	Using NodeNetworks
	Using the Console to Interact with Nova
	Advanced Programming Techniques
	Playing with the clock

	Debugging
	References
	JavaScript
	Datatypes
	Program structures

	Property and Primop Reference
	Universals
	Primops by category

	Clocked Chip Primops
	Cell Properties and Primops
	Hexagonal primops

	Agent Properties and Primops
	SimWorld Properties and Primops
	Cell Capsules in a SimWorld
	Agent Capsules in a SimWorld
	Hexagonal primops

	NodeNetwork Properties and Primops

	NovaScript Objects
	Coords object
	Clock object

	Glossary

